Absolute Lipschitz extendability
نویسنده
چکیده
A metric space X is said to be absolutely Lipschitz extendable if every Lipschitz function f from X into any Banach space Z can be extended to any containing space Y ⊇ X , where the loss in the Lipschitz constant in the extension is independent of Y , Z, and f . We show that various classes of natural metric spaces are absolutely Lipschitz extendable. c © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Sur la propriété d’extension lipschitzienne absolue Résumé. On dit qu’un espace métrique X a la propriété d’extension lipschitzienne absolue si pour tout espace de Banach Z, toute fonction lipschitzienne f de X dans Z peut être étendue à tout espace métrique Y contenant X , avec une perte dans la constante de Lipschitz de l’extension qui ne dépend pas du choix de Y, Z et f . Nous montrons que plusieurs classes naturelles d’espaces métriques ont la propriété d’extension lipschitzienne absolue. c © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Let (Y, dY ), (Z, dZ) be metric spaces, and for every X ⊆ Y , denote by e(X, Y, Z) the infimum over all constants K such that every Lipschitz function f : X → Z can be extended to a function f̃ : Y → Z satisfying ‖f̃‖Lip ≤ K‖f‖Lip. (If no such K exists, we set e(X, Y, Z) = ∞). We also define e(Y, Z) = sup{e(X,Y, Z) : X ⊆ Y } and for every integer n, en(Y, Z) = sup{e(X, Y, Z) : X ⊆ Y, |X| ≤ n}. Estimating e(Y,Z) is a classical and fundamental problem that has attracted a lot of attention due to its intrinsic interest and applications to geometry and approximation theory. It is a classical fact that for every metric space Y , e(Y, `∞) = 1, and Kirszbraun’s famous extension theorem [K] states that whenever H1 and H2 are Hilbert spaces, e(H1, H2) = 1. We refer to the books [BL, WW] for a detailed account of the case e(Y,Z) = 1 and list below three results which deal with the case e(Y, Z) > 1, when the target space Z is a Banach space. In what follows, C is a universal constant. T1. ( Johnson-Lindenstrauss-Schechtman [JLS] ) For every metric space Y and every Banach space Z, en(Y, Z) ≤ C log n. T2. ( Johnson-Lindenstrauss-Schechtman [JLS] ) For every d-dimensional normed space Y and every Banach space Z, e(Y, Z) ≤ Cd. Note présentée par Michael GROMOV. S0764-4442(00)0????-?/FLA c © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. 1
منابع مشابه
Lipschitz - type bounds for the map A → | A | on L ( H )
It is well known that the absolute value map on the self-adjoint operators on an infinite dimensional Hilbert spaces is not Lipschitz continuous, although Lipschitz continuity holds on certain subsets of operators. In this note, we provide an elementary proof that the absolute value map is Lipschitz continuous on the set of all operators which are bounded below in norm by any fixed positive con...
متن کاملFinite Metric Spaces & Their Embeddings: Introduction and Basic Tools
Definition of (semi) metric. CS motivation. Finite metric spaces arise naturally in combinatorial objects, and algo-rithmic questions. For example, as the shortest path metrics on graphs. We will also see less obvious connections. Properties of finite metrics. The following properties have been investigated: Dimension , extendability of Lipschitz and Hölder functions, decomposability, Inequalit...
متن کاملL−bounds for the Riesz Transforms Associated with the Hodge Laplacian in Lipschitz Subdomains of Riemannian Manifolds
We prove Lp-bounds for the Riesz transforms d/ √ −∆, δ/ √ −∆ associated with the Hodge-Laplacian ∆ = −δd − dδ equipped with absolute and relative boundary conditions in a Lipschitz subdomain Ω of a (smooth) Riemannian manifoldM, for p in a certain interval depending on the Lipschitz character of the domain.
متن کاملm at h . A P ] 3 1 A ug 2 00 4 LIPSCHITZ DOMAINS , DOMAINS WITH CORNERS , AND THE HODGE LAPLACIAN 1
We define self-adjoint extensions of the Hodge Laplacian on Lipschitz domains in Riemannian manifolds, corresponding to either the absolute or the relative boundary condition, and examine regularity properties of these operators’ domains and form domains. We obtain results valid for general Lipschitz domains, and stronger results for a special class of “almost convex” domains, which apply to do...
متن کاملLipschitz Extension of Multiple Banach-valued Functions in the Sense of Almgren
A multiple-valued function f : X → QQ(Y ) is essentially a rule assigning Q unordered and non necessarily distinct elements of Y to each element of X. We study the Lipschitz extension problem in this context by using two general Lipschitz extension theorems recently proved by U. Lang and T. Schlichenmaier. We prove that the pair ` X,QQ(Y ) ́ has the Lipschitz extension property if Y is a Banach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003